
February 16, 2008 13:10 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

1

On characterization of the extension property

A.P.GONCHAROV

Department of Mathematics, Bilkent University,
Ankara, 06800, Turkey

∗E-mail:goncha@fen.bilkent.edu.tr

The geometric characterization of the extension property for Cantor-type sets,
found in [3], is related to the rate of growth of the values of the discrete
logarithmic energies of compact sets that locally form the set.

Keywords: Extension property, Cantor-type sets, discrete logarithmic energies.

1. Extension Problem

Let K be a compact set in Rd. Then E(K) is the space of Whitney jets on
K, that is the space of traces on K of C∞ functions. Topology in the space
E(K) can be given by the system of seminorms

|| f || q = inf |F | q, q ∈ N,

where the infimum is taken for all possible extensions of f to F and |F | q
denotes the q−th norm of F in C∞(Rd).

The Extension Problem is to characterize when there exists a linear
continuous extension operator L : E(K) −→ C∞(Rd). We say that the
compact set K has the extension property if there exists a such operator.

Tidten in [6] applied Vogt’s condition for a splitting of exact sequences
of Fréchet spaces and gave a topological characterization of the extension
property: a compact set K has the extension property if and only if the
space E(K) has a dominating norm (see for instance [2] for the definition
of a dominating norm and for a recent account of the theory).

Nevertheless, the problem of a geometric characterization of the exten-
sion property that goes back to the work [5] of Mityagin, is still open even
for the one-dimensional case, in spite of the presence of numerous particu-
lar results. Here we consider the geometric characterization of the extension
property for Cantor-type sets found in [3].
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2. Cantor-type sets

Given l1 with 0 < l1 < 1/2 and a sequence (αs)∞s=2 with αs > 1 let us define
the sequence (ls)∞s=0 in the following way: l0 = 1, l1, l2 = lα2

1 , · · · , ls =
lα2α3···αs
1 , · · · . Then by K(α n) we denote the symmetric Cantor-type set⋂∞

s=0

⋃ 2s

j=1 I j, s , where |I j, s| = l s for all j. Here the closed intervals I j, s

we call basic intervals. Let x be an endpoint of some basic interval. Then
there exists the minimal number q ( the type of x) such that x is the endpoint
of some Ij, m for every m ≥ q.

As in [3] we suppose that αs ≥ 1 + ε0, s ≥ s0 for some positive ε0 and
ls ≥ 4 ls+1 for all s. Let hs = ls − 2ls+1 be the gap between two adjacent
intervals.

We follow the notations used in [3]: πn, 0 = 1 and for n ≥ 1, s ≥ 1 let

πn, s = 2−sαn+1αn+2 · · ·αn+s, σn, s =
s∑

k=0

πn, k.

Theorem [3]. The following are equivalent:
(i) The set K(αn) has the extension property.
(ii) ∀M > 0 ∃ sM : lMn+s > l2

s

n l2
s−1

n+1 · · · ln+s, ∀n ∀s ≥ sM .

(iii) σn, s+1 / σn, s ⇒ 1, as s →∞ uniformly with respect to n.

We see that the condition (ii) is purely geometrical, whereas the condi-
tion (iii) is related to the theory of logarithmic potential. In what follows
log denotes the natural logarithm.

3. Discrete logarithmic energies

Let K be a compact set in C and for given N points z1, · · · , zN ⊂ K let
µN = µN (z1, · · · , zN ) denote the discrete measure that associates the mass
1/N to any point zk, 1 ≤ k ≤ N. The logarithmic potential of measure µN

is given by

UµN (z) =
1
N

N∑

k=1

log
1

|z − zk| .

Any discrete measure has infinite energy, but if we use the truncated
kernels (see e.g.[1]), then we can define the corresponding logarithmic en-
ergy as in [4]:

I(µN ) =
1

N2

N∑

k,j=1,k 6=j

log
1

|zj − zk| .
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Clearly,

I(µN ) =
−2
N2

log|V (z1, · · · , zN )|,

where for the corresponding Vandermonde determinant we have

V (z1, · · · , zN ) =
∏

1≤j<k≤N

(zk − zj).

Points (zk)N
k=1 ⊂ K that maximize the determinant V (z1, · · · , zN )

(or minimize the corresponding discrete logarithmic energy) are known as
Fekete points of order N for K.

Given compact set K(αn) let us fix n ∈ N and N = 2s+1 for some
s ∈ N0 := {0, 1, · · · }.

Let (zk)N
k=1 consist of all endpoints of the type ≤ s + n on the first

basic interval [0, ln] ordered increasingly, that is z1 = 0, z2 = ls+n, z3 =
ls+n−1 − ls+n, · · · , zN = ln.

Lemma 3.1.

e−22s+3 lε0
n l4

s σn, s
n < |V (z1, · · · , zN )| < l4

s σn, s
n .

Proof. Temporarily we denote ln+s l2n+s−1 · · · l2
s

n by λ. We see at once that∏N
k=2 | zk − z1 | < λ. The product

∏N
k=3 | zk − z2 | with the upper bound

l2n+s−1 · · · l2
s

n we join with | zN − zN−1 | = ln+s. We continue in this fashion
to join the product

∏N
k=m+1 | zk − zm | with the product

∏N
k=N−m+2 | zk −

zN−m+1 | for m = 3, · · · , 2s. For each m we can estimate from above the
joint product through λ. Since there are 2s pairs of products, we get the
bound

|V (z1, · · · , zN )| < λ2s

.

By definition, λ has the form lκn , where κ = αn+1 αn+2 · · ·αn+s +
2αn+1 · · ·αn+s−1 + · · · + 2s−1 αn+1 + 2s = 2s [1 + 2−1αn+1 + · · · +
2−sαn+1 αn+2 · · ·αn+s] = 2s σn, s, which gives the desired upper bound
of the lemma.

To estimate |V (z1, · · · , zN )| from below we replace all lk in λ by hk for
k = n, n+1, · · · , n+ s− 1, since the distance between any two points zi, zj

that belong to the same basic interval of the length lk, but do not belong
to an interval of the length lk+1, is not smaller than hk.

Therefore,

|V (z1, · · · , zN )| > (ln+s h2
n+s−1 · · ·h2s

n )2
s

= λ2s · a
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with log a = 2s (2 log hn+s−1
ln+s−1

+ · · · + 2s log hn

ln
). By condition, hk

lk
=

1 − 2 lk+1
lk

> 1
2 . From this log hk

lk
> −4 lk+1

lk
≥ −4 lε0

k and log a >

−2s
∑n+s−1

k=n 2n+s−k+2 lε0
k > −22s+3 lε0

n , which completes the proof.

Corollary.

1
2

σn, s log
1
ln

< I(µN ) <
1
2

σn, s log
1
ln

+ 4 lε0
n . (1)

Theorem 3.1. If the set K(αn) has the extension property then

In(µ2s+1)/In(µ2s) → 1, as s →∞, n →∞.

Here In(µ2s+1) stands for the discrete logarithmic energy defined by all end-
points of the type ≤ s + n on any basic interval of the length ln.

Proof. Write γn = 8 lε0
n log−1 l−1

n . From (1) we have

In(µ2s+1)
In(µ2s)

<
σn, s + γn

σn, s−1
<

σn, s

σn, s−1
+ γn,

since σn, s−1 > 1. Now the result follows on the condition (iii) and decrease
of the sequence γn.

One can conjecture that the existence of a linear continuous extension
operator for the space E(K) (at least for Cantor-type sets) is characterized
by a regularity of growth of the minimal discrete logarithmic energies cor-
responding to compact sets that locally form the set K. The points (zk)N

k=1

considered in Lemma give rather rough approximation of the minimal en-
ergy for the set K(αs) ∩ [0, ln]. The exact position of the Fekete points is
not known even for rarefied Cantor-type sets.
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